Amblecote Primary School

Written Calculation Policy for Mathematics

As school we follow the guidance from White Rose Maths

Key vocabulary for $+-\mathrm{X} \div$ written calculations

Addition	Subtraction	Multiplication	Division	Equals
Add And Addition Altogether Increase inverse of - make more plus sum total	Between difference decrease fewer inverse of + minus subtract subtraction take away less than	Altogether Arrays By groups of inverse of \div lots of multiply multiply by multiple of product times twice/double etc	divide into divide by divisible by division half inverse of x remainder quotient share equally	Balance Equals to Equivalent Same as Same value

Addition	Subtraction	Multiplication	Division
Count sets of objects reliably up to twenty.	Taking away ones	Double a number up to 10	Sharing objects up to 10 equally
Combining two parts to make a whole.	Counting back	Counting $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s up to 20	
Start at a bigger number and count on.	Finding a missing part, given a whole and a part.		
Regrouping to make ten (number bonds)	Subtracting within 10		

ELG: Number: Children at the expected level of development will:
Have a deep understanding of number to 10 , including the composition of each number; 14

Subitise (recognise quantities without counting) up to 5 ;

- Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10 , including double facts.

ELG: Numerical Patterns: Children at the expected level of development will:

- Verbally count beyond 20 , recognising the pattern of the counting system;

Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity;

- Explore and represent patterns within numbers up to 10, including evens and odds, double facts and how quantities can be distributed equally.

Mathematics

Mathematics Developing a strong grounding in number is essential so that all children develop the necessary building blocks to excel mathematically. Children should be able to count confidently, develop a deep understanding of the numbers to 10 , the relationships between them and the patterns within those numbers. By providing frequent and varied opportunities to build and apply this understanding - such as using manipulatives, including small pebbles and tens frames for organising counting - children will develop a secure base of knowledge and vocabulary from which mastery of mathematics is built. In addition, it is important that the curriculum includes rich opportunities for children to develop their spatial reasoning skills across all areas of mathematics including shape, space and measures. It is important that children develop positive attitudes and interests in mathematics, look for patterns and relationships, spot connections, 'have a go', talk to adults and peers about what they notice and not be afraid to make mistakes.

Multiplication X and Division \div

Concrete

> These are visual images of the actual resources to use within the classroom.
> Use a range of different practical resources. (e.g.base 10, place value counters, straws)

Pictorial

> These are pictorial representations that may appear in pupil's work.
> These can also be completed practically when needed.

Abstract

These can be number lines, bar models, Part-part whole, formal methods

Grouping

$\frac{\sim}{2}$	Learn to make equal groups from a whole and find how many equal groups of a certain size can be made. Sort a whole set people and objects into equal groups. There are 10 children altogether. There are 2 in each group. There are 5 groups.	Represent a whole and work out how many equal groups. There are 10 in total. There are 5 in each group. There are 2 groups.	
Sharing			
n	Share a set of objects into equal parts and work out how many are in each part.		
National Curriculum Expectations - Multiplication and Division			

Multiplication X

Concrete

> These are visual images of the actual resources to use within the classroom.
> Use a range of different practical resources. (e.g.base 10, place value counters, straws)

Pictorial

> These are pictorial representations that may appear in pupil's work.
> These can also be completed practically when needed.

Abstract

These can be number lines, bar models, Part-part whole, formal methods

Find the total of equal groups by counting in 2s, 5s, 10s

	I can see 6 groups of I can see 3 groups of 2 lots of $2 \times 5=5 \times 2$	5 lots of 2	00 00 00 00 00 Pupils to rotate the a orientation does not	00000 00000 y, to show that ange the multiplication.	Pupils to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$
Short multiplication TO x O No exchange					
$\begin{aligned} & \text { n } \\ & \stackrel{y}{历} \\ & \underset{\sim}{\circ} \end{aligned}$	$23 \times 3=69$		T 0 00 000 00 000 00 000 6 9		Leading to ... $\begin{array}{r} 23 \\ \times \quad 3 \\ \hline 69 \\ \hline \end{array}$
Short multiplication TO x O-Expanded Column Method					

	$\begin{aligned} & \mathbf{2 3 \times 5}=\mathbf{?} \\ & 3 \times 5=15 \\ & 20 \times 5=100 \\ & 23 \times 5=115 \end{aligned}$		B D © D			T 00 00 00 00 00	$-\frac{0}{-000}$000 000 000 000	$\begin{array}{r} \text { TO } \\ 23 \\ \times 5 \\ \hline 15 \\ \frac{100}{115} \\ \underline{115} \\ \hline \end{array}$
Short multiplication TO x O, HTO x O-Column Method								
	$23 \times 6=138$				$23 \times 6=138$	H T 00 0 0 0 1 3	$\frac{0}{000}$ 000 000 000 000 0.00 8	23 Pupils to understand how the expanded column method is related to the formal column method.
Long multiplication - multi-digit numbers up to 4 digits x TO - Column Method								

	As pupils start to multiply multi-digit numbers up to 4 digits by a two-digit whole number, they should be confident with the abstract.	$\begin{array}{r} 34 \\ \times \quad 27 \\ \hline 23834 \times 7 \end{array}$ \qquad \qquad $\begin{array}{r} 34 \\ \times \quad 27 \\ \hline 238 \\ 680 \times 7 \\ 684 \times 20 \\ \hline \end{array}$ $\begin{array}{r} 34 \\ \times \begin{array}{r} 27 \\ \times 28 \\ \hline 680 \\ 68 \\ \hline 918 \\ 91 \end{array} 34 \times 27 \end{array}$ Ensure understanding of place value at each stage.
		$\mathbf{1}$ $\mathbf{2}$ $\mathbf{4}$ \times $\mathbf{2}$ 6 $\mathbf{7}$ 4 $\mathbf{2}$ $\mathbf{2}$ $\mathbf{4}$ $\mathbf{8}$ $\mathbf{0}$ $\mathbf{3}$ $\mathbf{2}$ $\mathbf{2}$ $\mathbf{4}$ 1 1 Answer: 3224
Multiplying decimals by whole number		

	As pupils start to multiply one-digit numbers with up to two decimal places by whole numbers, they should be confident with the abstract.	$\begin{aligned} & 4.72 \\ & \times 3 \\ & \hline 14.16 \\ & \hline 2 \end{aligned}$

Division -

Concrete

> These are visual images of the actual resources to use within the classroom.
> Use a range of different practical resources. (e.g.base 10, place value counters, straws)

Pictorial

> These are pictorial representations that may appear in pupil's work.
> These can also be completed practically when needed.

Abstract

> These can be number lines, bar models, Part-part whole, formal methods

Grouping

	Sort a whole set people and objects into equal groups. There are 10 children altogether. There are 2 in each group. There are 5 groups	Represent a whole and work out how many equal groups. There are 10 in total. There are 5 in each group. There are 2 groups.	Children may relate this to counting back in steps of 2,5 or 10 .
Sharing			

$\underset{\text { ᄃ }}{\text { ᄃ }}$	Share a set of objects into equal parts and work out how many are in each part.	Sketch or draw to represent sharing into equal parts.	10 shared into 2 equal groups gives 5 in each group.
Grouping equally / Making equal groups			
	There are 8 children. There are two children in each group. There are 4 groups. 8 divided into 4 equal groups $=2$ in each group	$12 \div 3=4$ $12 \div 4=3$ $12 \div 6=2$ 00000000000 $12 \div 2=6$ \square	 There are 4 groups now. Count up from 0 in 3 's. 12 divided into groups of 3 . $12 \div 3=4$ There are 4 groups.

Sharing equally			
$\begin{aligned} & \text { N } \\ & \stackrel{\rightharpoonup}{\varpi} \\ & \underset{\sim}{x} \end{aligned}$	12 shared equally between 2 . They get 6 each.	00 00 00 0 0 00 00 00 00 00 20 shared into 5 equal parts. There are 4 in each part.	०००००००००००००००००० \square $18 \div 2=9$
Understand remainders			
\cdots	 There are 13 sticks in total. There are 3 groups of 4 , with 1 remainder.	$22 \div 5=4$ remainder 2	$22 \div 5=?$ $5 \times 5=25 \ldots$ this is larger than 22 So, $22 \div 5=4$ remainder 2

As pupils start to divide numbers up to 4-digits by a two-digit whole number they should be confident with the abstract.

The method of 'chunking' which uses knowledge of multiplication facts and repeated subtraction may be adopted as a informal written methid of division.

Progress the long division with decimals.

Short \div

(use multiples of the divisor to support) E.g.

$$
\begin{gathered}
4320 \div 15=288 \\
288
\end{gathered}
$$

$$
15 \mid 4^{4} 3^{13} 2^{12} 0
$$

Chunking

13

$$
22 r 8
$$

$$
\begin{aligned}
& 294 \\
& \frac{130}{164}(10 \times 13) \\
& \frac{130}{34}(10 \times 13) \\
& \frac{26}{8}(2 \times 13)
\end{aligned}
$$

$$
\begin{aligned}
20 \times 13 & =260 \\
10 \times 13 & =130 \\
5 \times 13 & =65 \\
2 \times 13 & =26 \\
1 \times 13 & =13
\end{aligned}
$$

Formal Written Long Division
$4465 \div 19=235$

