Amblecote Primary School

Written Calculation Policy for Mathematics

As school we follow the guidance from White Rose Maths

Key vocabulary for $+-\mathrm{X} \div$ written calculations

Addition	Subtraction	Multiplication	Division	Equals
Add And Addition Altogether Increase inverse of - make more plus sum total	Between difference decrease fewer inverse of + minus subtract subtraction take away less than	Altogether Arrays By groups of inverse of \div lots of multiply multiply by multiple of product times twice/double etc	divide into divide by divisible by division half inverse of x remainder quotient share equally	Balance Equals to Equivalent Same as Same value

Early Years Foundation Stage (based on statutory framework for the Early Tears Foundation Stage 2021)

Addition	Subtraction	Multiplication	Division
Count sets of objects reliably up to twenty.	Taking away ones	Double a number up to 10	Sharing objects up to 10 equally
Combining two parts to make a whole.	Counting back	Counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s up to 20	
Start at a bigger number and count on.	Finding a missing part, given a whole and a part.		
Regrouping to make ten (number bonds)	Subtracting within 10		

ELG: Number: Children at the expected level of development will:

- Have a deep understanding of number to 10 , including the composition of each number; 14
- Subitise (recognise quantities without counting) up to 5;
- Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10 , including double facts.

ELG: Numerical Patterns: Children at the expected level of development will:

- Verbally count beyond 20, recognising the pattern of the counting system;

Mathematics

Mathematics Developing a strong grounding in number is essential so that all children develop the necessary building blocks to excel mathematically. Children should be able to count confidently, develop a deep understanding of the numbers to 10 , the relationships between them and the patterns within those numbers. By providing frequent and varied opportunities to build and apply this understanding - such as using manipulatives, including small pebbles and tens frames for organising counting - children will develop a secure base of knowledge and vocabulary from which mastery of mathematics is built. In addition, it is important that the curriculum includes rich opportunities for children to develop their spatial reasoning skills across all areas of mathematics including shape, space and measures. It is important that children develop positive attitudes and interests in mathematics, look for greater than, less than or the same as the other quantity;

Explore and represent patterns within numbers up to 10 , including evens and odds, patterns and relationships, spot connections, 'have a go', talk to adults and peers about what they notice and not be afraid to make mistakes.

Addition +

Concrete

> These are visual images of the actual resources to use within the classroom.
> Use a range of different practical resources. (e.g.base 10, place value counters, straws)

Pictorial

> These are pictorial representations that may appear in pupil's work.
> These can also be completed practically when needed.

Abstract

$>$ These can be number lines, bar models, Part-part whole, formal methods

Counting and adding more

Children add one more person or object to a group
to find one more.
Children add one more cube or counter to a group to
represent one more

Subtraction -

Concrete

> These are visual images of the actual resources to use within the classroom.
> Use a range of different practical resources. (e.g.base 10, place value counters, straws)

Pictorial

> These are pictorial representations that may appear in pupil's work.
> These can also be completed practically when needed.

Abstract

> These can be number lines, bar models, Part-part whole, formal methods

Counting back and taking away

Children arrange objects and remove to find how many are left.

1 less than 6 is 5 .
6 subtract 1 is 5 .

Children draw and cross out or use counters to represent objects from a problem.

There are \square children left.

Children count back to take away and use a number line or number track to support the method.

$9-3=6$

| Finding a missing part, given a whole and a part | |
| :--- | :--- | :--- | :--- | :--- |
| Children separate a whole into parts and understand | |
| how one part can be found by subtraction | | 年

Progression in Maths	National Curriculum Expectations - Addition and Subtraction					
	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Calculation Methods (formal and informal)	add and subtract one-digit and two-digit numbers to 20, including zero	add and subtract numbers using concrete objects, pictorial representations, and mentally, including: * a two-digit number and ones * a two-digit number and tens * two two-digit numbers * adding three one-digit numbers	add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction	add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate	add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction) (extend this to decimals)	
			add and subtract numbers mentally, including: * a three-digit number and ones * a three-digit number and tens * a three-digit number and hundreds			
Mental Methods						
Understanding addition and subtraction	read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs	show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot				
Addition and subtraction facts	represent and use number bonds and related subtraction facts within 20	recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100				
Problem Solving	solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=\square-9$	solve problems with addition and subtraction: * using concrete objects and pictorial representations, including those involving numbers, quantities and measures * applying their increasing knowledge of mental and written methods	solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction	solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why	solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why	solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

Addition +

Concrete

> These are visual images of the actual resources to use within the classroom.
> Use a range of different practical resources. (e.g.base 10, place value counters, straws)

Pictorial

> These are pictorial representations that may appear in pupil's work.
> These can also be completed practically when needed.

Abstract

> These can be number lines, bar models, Part-part whole, formal methods

Combining two parts to make a whole

Counting on | Use a range of resources e.g. cars, eggs, shells, |
| :--- |
| teddy bears. |

$$	 Continue to develop understanding of partitioning and place value. $34+5=39$	$34+5=39$ Pupils to represent the base 10 e.g. lines for tens and dot/crosses for ones.	T O 3 4 $+\quad 1$ 5 3 9
TO + O with exchange			
$\begin{aligned} & N \\ & \frac{1}{\sigma} \\ & \underset{\sim}{\top} \end{aligned}$	T 0 佤 城 $24+8=32$	$24+8=32$ Pupils to represent the base 10 in a place value chart, circling when they make an exchange.	T O 2 4 8 3 2
TO + TO without exchange			

$\begin{aligned} & \mathbf{N} \\ & \vdots \\ & \stackrel{1}{\sigma} \\ & \underset{\sim}{0} \end{aligned}$	$32+14=46$ Add the 1 s then add the 10 s .	T 0 111 \cdots 1 \cdots 4 6$32+14=46$ Pupils to represent the base 10 e.g. lines for tens and dot/crosses for ones.	Add the 1 s then add the 10 s .
TO + TO with exchange			
	$36+29=65$ - Add the 1s. - Exchange 10 ones for a ten. - Add the 10s.	$36+29=65$ Pupils to represent the base 10 in a place value chart, circling when they make an exchange.	Step 1: Step 2: - Add the 1s. - Exchange 10 ones for a ten. - Add the 10 s.
HTO + TO, HTO + HTO (with and without exchange)			

$$	$554+237=791$ Use of place value counters to add HTO + TO, $\mathrm{HTO}+\mathrm{HTO}$ etc. - When there are 10 ones in the 1 s column- we exchange for 1 ten. - When there are 10 tens in the 10 s column- we exchange for 1 hundred. This can be shown practically using dienes or counters where applicable.	 $275+16=291$ Pupils to use place value counters in a place value chart, circling when they make an exchange.	Step 1: Step 2: Step 3: $275+16=291$ - Add the 1s. - Exchange 10 ones for a ten. - Add the 10 s. - Exchange the 10 s for 100 (if needed). - Add the 100 s .
ThHTO + ThHTO (with and without exchange)			

Subtraction -

Concrete

> These are visual images of the actual resources to use within the classroom.
$>$ Use a range of different practical resources. (e.g.base 10, place value counters, straws)

Pictorial

> These are pictorial representations that may appear in pupil's work.
> These can also be completed practically when needed.

Abstract

> These can be number lines, bar models, Part-part whole, formal methods

Counting back

q-

\square
There are \square children left.

Pupils draw and cross out or use counters to represent object from a problem.

$$
\begin{aligned}
& 4-3=? \\
& ?=4-3
\end{aligned}
$$

$\begin{gathered} \mathbf{N} \\ \stackrel{1}{\pi} \\ \underset{\sim}{\mathbf{O}} \end{gathered}$	Tens Ones 茷迸 $45-12=33$	$45-12=33$ Pupils to represent the base 10 in a place value chart，crossing out the numbers they have taken away．	$-\begin{array}{\|c\|c} \mathrm{T} & 0 \\ \hline 4 & 5 \\ 1 & 2 \\ \hline 3 & 3 \\ \hline \end{array}$
TO－TO with exchange			
$\begin{aligned} & \text { N } \\ & \stackrel{1}{\pi} \\ & \stackrel{0}{\top} \end{aligned}$	Step 1： Step 2： Step 3： Step 4： $45-27=18$	$45-27=18$ Pupils to represent the base 10 in a place value chart，showing the exchange．	$\begin{array}{rr} \mathrm{T} & 0 \\ \hline 4 & 5 \\ -2 & 7 \\ \hline & \\ \hline T & 0 \\ \hline{ }^{3} 4 & 5 \\ -2 & 7 \\ \hline & \\ \hline T & 0 \\ \hline{ }^{3} / 4 & 5 \\ -2 & 7 \\ \hline & 8 \\ \hline T & 0 \\ \hline 3 / 4 & 5 \\ -2 & 7 \\ \hline 1 & 8 \end{array}$
HTO－TO，HTO－HTO（with exchange）．Pupils will need to recap on＇without exchange＇first．			

	Th H T $:$ ©®®® Th H T $:-\infty$ $\odot \odot Q Q$ Th H T 0 O- $\circ \odot \odot Q$		Children to use place value counters in a place value chart, circling when they make an exchange. (see above for example)	With one exchange	$-\begin{array}{c\|rrr} T h & H & T & O \\ \hline X & 2 & 5 & 0 \\ & 4 & 2 & 0 \\ \hline & 8 & 3 & 0 \\ \hline \end{array}$
$\begin{aligned} & \stackrel{1}{\pi} \\ & \underset{\sim}{2} \end{aligned}$	$1250-420=830$			With more than one exchange	Th H T O 2 48 0 2 - 2 4 3 $\begin{array}{cccc} \text { Th } & H & T & O \\ \hline 2 & 48 & 9^{\prime} \varnothing & \prime 2 \\ - & 2 & 4 & 3 \\ \hline 2 & 2 & 5 & 9 \\ \hline \end{array}$
Subtraction of more than 4-digit numbers					

$\text { Years } 5 \text { \& } 6$	Use of place value counters to subtract more than 4digit numbers				Children to use place value counters in a place value chart, circling when they make an exchange. (see above for example)	TTh Th H T 0 ${ }^{5} \not Z^{\prime \prime}$ I' 0 9 7 -1 8 5 3 4 4 3 5 6 3 - Pupils to subtract numbers of different sizes.
Subtracting decimals						
	$\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 5 \cdot 744 \\ -2 \cdot 25 \\ \hline \end{array}$ Exchange I tenth for 10 hundredths. $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 5 \cdot{ }^{6} 714 \\ -2 \cdot 2 \quad 5 \\ \hline \\ \hline \end{array}$ Now subtract the 5 hundredths. $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 5 \cdot 6 y 14 \\ -2 \cdot 2 \quad 5 \\ \hline . \quad 9 \\ \hline \end{array}$ Now subtract the 2 tenths, then the 2 ones. $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 5 \cdot 6714 \\ -2 \cdot 2 \quad 5 \\ \hline 3 \cdot 4 \quad 9 \\ \hline \end{array}$				Children to use place value counters in a place value chart, circling when they make an exchange. (see above for example)	$\begin{array}{rrr} \hline 0 & - \text { Tth } & \text { Hth } \\ \hline 5 & -7 & 4 \\ -2 & -2 & 5 \\ \hline 3 & -4 & 4 \\ \hline \end{array}$ - Pupils subtract numbers with different number of decimal places. 3.921-3.75 - Ensure pupils are confident with subtracting decimal numbers from whole numbers. $14-5.2=$

